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Abslmct. We introduce a simple stochastic model for the collective evolution of a 
population of elements which can assume only a finite number n of states (‘damage’) 
d=klnforO<k<n.Theevolutionisgiven byaprobabilisticrule whichdependsodyon a 
function of the damage, and diverges for d = l .  We consider mostly cases where a 
homogeneous evolution (same damage for all elements) is unstable. Our aim is to 
characterize the final state of the system (i.e. the statistical distribution of the damage) in 
the thermodynamic limit. A non-trlvial scaling with the number of damage states is 
observed. The scaling variable (1 - d)ns accounts for the n-dependence of most properties 
of the model. The exponent is only a function of the singularilyof the probability, and its 
expression is obtained from a mapping to a convection-diffusion problem. The depen- 
dence on the number of elements leads to logarithmic corrections which are discussed. 

1. Introduction 

The aim of this article is to propose a model suitable for describing the statistics of a 
set of elements whose collective evolution is unstable. For this purpose, we propose a 
simple ‘mean-field’ stochastic model. The probabilistic nature of the evolution is an 
essential feature. The competition behkeen the average driving force of the instability 
and the statistical fluctuations leads to non-trivial scaling laws. 

Typical applications are stochastic growth models [l]. some hydrodynamic 
instabilities such as viscous fingering [12], or fracture models [3]. However, the model 
is not restricted to those examples and it constitutes a general template which can 
easily be tailored to other physical problems. We will come back more precisely on 
these applications after having defined the model. 

2. Model 

We consider a population of m elements. Each one is characterized by a ’damage’, d, 
which can assume only n different values: d = k/n for 0 s f c ~  (n  - 1). Moreover, the 
damage is irreversible, and can only increase. Initially, all elements have zero 
damage. The evolution is given by the following probabilistic rule: At each time step, 
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we randomly choose a site i with a probabilityp, proportional to a given function of its 
damage p(di). Normalization of the probability leads to the expression 

Pt=P(dt) P ( 4 .  In j = l  

The damage at this site is increased to dl=d,+ lln. The process is repeated until one 
site reaches d = 1. (The state d = 1 is not counted as a state since it is never occupied 
during the process, and as soon as it is, the evolution stops!) 

A central element of the model is the function q(d) which characterizes the 
stability of the system. If q ( x )  was a constant, all elements would be damaged with the 
same probability, and thus our model reduces in this limit to a mere diffusion process. 
When q(d) is an increasing function of the damage, the 'homogeneous' evolution of 
the system is unstable. Indeed an element which has a larger damage than the other 
will tend to be more easily damaged. This is the situation we are mostly interested in. 
We will consider functions with a singular behaviour for d = 1: 

1 
W)=(l-d)". (2) 

The divergence of q ford = 1 legitimizes our stopping criterion. Indeed, if an element 
i would reach this l i t  value, the probability of further increase of this site would be 
1, and that of the other elements 0. Thus the system would be quenched at this stage 
of evolution. In this study, we focus on the scaling properties of the problem, and 
thus, we expect that these are solely dependent on the singularity (i.e. a) of q(d) at 
the point where it diverges. 

Variants of this model could be considered, such as the stable case where q(d) is a 
decreasing function of the damage. In such a case, the evolution is stable since a less 
damaged element will have a larger probability of being damaged. We will see below 
that there exists a small region of stability (namely -4<a<O) where non-trivial 
scaling properties are encountered. Another case of physical interest would be the 
situation where q increases continuously without diverging for a finite value of the 
damage (e.g. q(d) =d*). 

Let us note finally a few points before discussing the results. The coupling between 
different elements is reduced to a very simple form. It appears only in the expression 
of the probability of evolution, due to the normalization condition (1). Since there is 
no geometrical coupling between elements, the model can be considered as a mean- 
field description, in as much as any element interacts with any other equally. Elements 
should here be considered in a broad sense. They can be material elements (see 
below), but also Fourier modes for instance. 

For applications to the field of growth models, such as the celebrated diffusion 
limited aggregation model [4], or variants of it such as the dielectric breakdown model 
[ 5 ] ,  we can consider 'elements' to be the tips of the growing cluster or propagating 
crack, respectively. In a finite geometry such as most often considered experimentally, 
the process will stop as soon as one tip has reached the boundary. If we assume that 
the rate of growth of a tip is simply a function of its distance to this boundary-or 
(1 - d) in the language we use to define the model-we are dealing with our precise 
model. The growth probability does not take into account the real tip interactions, but 
rather some statistical 'screening' does occur because of the normalization condition 
we imposed. 
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For viscous fingering [ Z ]  we can use the same picture due to the well-known 
correspondence with the previous model. It is interesting to note that by introducing a 
non-Newtonian fluid, such as some polymer solutions which display a power-law 
behaviour between the effective viscosity and the shear rate, one can easily vary the 
weight function q, and in particular its singularity a. 

Finally, in the case of fracture, one can consider an 'element' as a slice of material. 
The damage d for this slice can be considered to be the usual 'damage' (i.e. relative 
reduction of elastic modulus due to the microcracks in the element). An assumption of 
'locality' which would relate the probability of further damage to the mean stress in 
the element-and thus to its damage for a homogeneous loading-leads again to the 
model we introduced above.  this mean-field limit, may help in understanding some 
recently proposed scaling laws obtained from numerical simulation [6].  

3. Final damage scalimg for two elements (m =2) 

We studied the problem using two methods, depending on the number m of elements. 
When m is small, it is convenient to deal directly with the probability functions, 
whereas for large m ,  we resort to a Monte-Carlo simulation. Let us first present the 
first case, for m = 2. 

The system is characterized at each step of the evolution by two damages (di, d2). 
The total number of damage updates is the sum of the two damages times n.  We can 
thus introduce a 'time' f =  (d,  +d$Z as the average damage. 

In the (d , ,d2)  plane, the mean flow can be easily constructed from the q ( d )  
function. At each point. the mean drift is parallel to the vector q ( d l ) ,  q (dz) ) .  The flow 
lines are given by the equation dy/dx=q(y)/q(x). Introducing the integral tp(x)= 
J d x / q ( x ) ,  the flow lines are given by 

t p ( 4  = t p ( 4  + K (3) 
where K is a constant. In the case a= 1, the flow lines are hyperbolas, (1 - d,)'- 
(1 - d2)2= K .  Figure 1 shows the flow lines in the square [0, 11'. The divergence of the 

dz 

1.0 

os 
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0.4 
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""~////~ 
di 

Figure]. Flow lines in the ( d , , d z )  plane. for a= 1. The divergence of the flow is the 
reason for the instability of the homogeneous evolution. In this particular case, the flow 
lines are hyperbolas. 
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flow reflects the instability of the model. For Q =0, flow lines are parallel straight lines 
d,=d,+ K. For negative Q (stable case), the flow lines converge toward the (1,l)  
comer. 

The problem may be seen as a convection-diffusion process, where diffusion is 
given by the probabilistic nature of the model, and convection is the result of the 
weighting function p(x). 

At each time step, we can relate simply the probabilities n(d, ,  4) =z(d,, 2(t-d,)) 
to those computed at the previous time step, through 

. . .  ' z ( d 1 7 ~ ) = p ( d ~ - 1 / n ) + p ( d ~ )  z(dl - l l n ,  d2j + 

The latter equation, which is simply a rewriting of (1). leads to a simple computation 
of the probability field, and thus by recording the probabilities x(d, 1) or z(1,d) 
(being equal), we obtain the probabilitypi that the damage in the surviving element at 
the final stage of the process, is equal to d=i/n: p i=k( i /n ,  1). We will be mostly 
interested in the continuum l i t  where the number of damage states n goes to 
infinity. In this continuum limit, the discrete set of probabilities is more conveniently 
described as a probability measure, and hence we have to take into account the 
vanishing of the differential element. To this end, we introduce the functions 
p.(d) = npi, so that p.(d)dd gives the probability that the damage lies in the interval 

Figure 2(a) gives an example of the functions p.(d) for a system containing two 
elements, a parameter Q =  1, and a number of states ranging kom n=50 to 800. We 
see on the figure that the number of states drastically changes the shape of the 
distribution. The first result we report here is that it is possible to account for this 
evolution through the definition of a reduced variable: 

[d, d+dd].  

6 =  (1 -d )d  (5)  
where B is a scaling exponent. If the damage appears only through the variable 6, then 
the normalization of the probability JAp.(d)dd= 1 imposes the normalization factor 

p.(d) =nW(6).  (6) 
We show on Figure 2(b), the plot ofp.(d)n-pversus 6, for the best value ofB=0.25 
determined for the data shown in Figure 2(a). The data collapse is excellent, and leads 
to a very precise determination of 8. 

How general is this scaling form? Figures 3(a) and 3(b) show two other examples 
of similar rescaliig obtained for other values of Q ( ~ = 0 . 5  and 2, respectively). The 
scaling exponent ,!3 obtained for those cases depends on Q. For ~ = 0 . 5  the best 
collapse is obtained forB=0.33, whereas for ~=2,f l=O.17.  

In addition, let us consider the particular case of neutrality, Q = 0, where p(d) is a 
constant. In this case, there is no bias, and the problem reduces to a simple random 
walk. In this case, the reduced variable 6 again leads to a scale invariant form with a 
scaling exponent ,9 =f. 

The form of the scaling variable can be understood using the following argument. 
In the very early stage of the process, the divergence of the flow will not be sensitive. 
The evolution will essentially be diffusive, then as the mean damage increase, the 
convection will be dominant. The crossover point d"  between the effect of diffusion 
and convection is given by the local bias in the damage evolution probability, and thus 
it is function of the damage only (independent of n).  
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5.0 , 

1.0 I 

Figure 2. (a) Distribution of damage p,(d) obtained for a system of two sites (m = 2). and 
q ( d ) = ( l - d ) - ' .  The number of damage states n takes on the following values for 
distributions from len to right n=S0. 100, ux), 400 and 800. (b)  Rescaled form of the 
distributions of figure Z(0). F=p.(d)n-B is plotted as a function of d = ( l - d ) n a  for 
B = O . Z S .  

In the first regime, the standard deviation of damage distribution will grow as the 
square root of the mean damage, and of the diffusion constant. The latter will depend 
on the size of the discrete damage steps performed. More precisely the diffusion 
constant will vary as lln. Thus when the average damage is at the crossover point, the 
deviation will vary as e. This difference in damage will then be mostly convected 
by the flow lines as sketched in figure 1. We now use (3) to obtain the expression of the 
flow lines: (1-dl)"+'=(l-d2)"+1+K. At the crossover time, the difference in the 
damage corresponds to a constant K= and thus the final damage for the least 
damaged site is (1 -d) = K"('+")= (n/d*)-b with 

1 /g=- 
2(1+ a) ' (7) 

Since d* is constant, we recover the scale invariant form d = ( l  -d)nP. 
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0.8 

1.5, 

Figure3. (a) Rescaled form of the distributionsp.(d) obtained fora=0.5. F=p.(d)n-@ is 
plotted as a function of 6= (1 - d ) d  for 8=0.33. (b) Rescaled form of the distributions 
p,,(d)obtained fora=Z F=p.(d)n-Pisplotted asafunctionof6=(l-d)dfor,!3=0.17. 

The value of j3 given by (7) is very precisely obeyed in the previous examples 
mentioned. 

However, equation (7) cannot be valid for all values of a. In particular j3 cannot 
exceed 1, hence limiting (7) to a>-+. The stable regime -4<a<O also displays 
some interesting scaling behaviour. We checked numerically an intermediate case 
a = - 0.25 and indeed, we obtained very good data collapse for 0.65, again very close 
to (7), which gives j3 = *. For a = - 1, we observed that the best data collapse is 
obtained for j3= 1. The relation between j and a is sketched on figure 4. 

The function F permits an n-independent characterization of the probability 
distribution of the damage at the final stage of the process. However, Fdoes depend 
on the function p(d), and thus in the cases we study here, on a. The general shape of 
the function nevertheless shares some common features for various a (see figure 5) .  
For small values of 8, i.e. for a damage close to 1, F@) behaves as a power law with an 
exponent equal to a. Again this property can be explained by the same argument as 
the one which leads to the value j3. The Gaussian distribution of damage-which was 
the result of the diffusion process prior to the crossover damage d*-has a constant 
density at the apex (d,=d2) up to second-order terms in the deviation 
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-20 -1.0 0.0 1.0 2.0 

a 
Figure4 Relation between the scaling exponent p and the singularity a of q ( d )  

((d, - 4) <<m). This small region will be stretched by the convection field and a 
constant probability at the crossover damage will give rise to a (1 - d)" behaviour close 
to 1, at the final stage. The upper limit of the power-law regime is a very abrupt cut-off 
for 6 = 6,. This corresponds to the fast decay of the Gaussian at the croswver point 
which is merely convected to the edge d = 1 by the convection field. 

This leads to the following property: If we are interested in the expectation value 
of 6-" where a is positive parameter, then two cases are to be distinguished: either a is 
smaller than a + 1, and thus the expectation value of is controlled by the apex of 
the F function (S-q-d;", or a is larger than a + l  and the expectation value 
( S - " ) ~ J $ ~ - ~ x ~ d x  diverges (i.e. it is controlled by the most damaged surviving 
element). In particular, the expectation value of p ( d )  corresponds exactly to the case 
a = a  and thus (p(d))  is not influenced by the most damaged element, but it i s  
determined by the most probable damage-we will come back on this property later. 

It is also interesting to compute the probability of increase the damage of an 
element having a damage d. This probability is proportional to the number of 

2.0 1 

F 

FigureS. The distribution F(6) for a= 1.0 shown in log-log coordinates with the power- 
law fit lo the small 6 behaviour with exponent a. Similar behaviours are observed for all 
values O f  a. 
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elements having this damage times the weight q(d). The behaviour of F(d) close to 
d= 1 shows that this probability is independent of the damage: it is constant for O <  
6<d0. Moreover, all values of the exponent a give this constant probability property. 

4. Final damage scaling for a large number of elements 

Let us now turn to the case where the number of elements is large. The previous 
technique would require one to deal with the probability distribution 
.z(d,, 4,. , . , dm), which becomes quickly prohibitive. In this case, we used a 
Monte-Carlo technique. More precisely, we considered the histogram of the damage 
states, i.e. the number N, of elements having a damage d =  iln. At each time step, the 
probability of selecting an element with d=  i /n  is equal to N i q ( i / n ) / ( ~ i N i q ( ~ / n ) ) .  
With such a probability we update the histogram N,+N,- 1 and N,,, -+,Vi+,+ 1. The 
process is repeated until N.= 1. At the end of the process, we record the distribution 
of the damage, as in the previous case, to construct a probability distribution 
pn,,&/n) = (nNi/(m - l)} where the angular brackets stand for an average over 
realizations. 

The previous scaling variable 6 = (1 - d)na leads again to a n-independent distribu- 
tion, 

p".,(d)n-B=Fm((l-d)nS) =Fm(4 (8) 
with 6 equal to the value obtained for the same q(d) function'and only m = 2  
elements. Figure 6 shows two examples of data collapse obtained for two values of 
m=40 and 160 (in both cases a= 1). For each of these m values, four data sets are 
shown n = 100,200,400 and 800. Excellent data collapse is obtained for large n values 
for fixed m, and thus the scaling form (8) is very closely obeyed. 

The reason why the scaling property with n is preserved for any value of m can be 
understood using a renormalization argument which will be discussed below. The 
system can be decomposed into a partition of elements, down to the level of m = 2  
elements. Each of these subsets will be described by the same functional dependence 
of the reduced variable 6 and hence, the entire set has also to follow such a scaling. 
The justification of the invariance of the problem under renormalization is a question 
we will discuss in more detail in the next section. 

Figure 6(c) also shows that the number of elements m does iduence significantly 
the shape of the function Fm(6). In order to understand the m-dependence, it is 
instructive to study the time evolution of the process. 

5. Time evolution 

In the description of the model, we have not addressed the definition of 'elements' 
since they will be dependent on the type of problem the model is applied to. However, 
in many cases, we will be interested in considering the continuum limit of large nand 
M .  In such a case an 'element' will consist of many individual components. For this 
model to be of any relevance, one should be able to account for such an intermediate 
scale description. Indeed, we will show that the model can be renormalized to a 
coarse-grain description with similar rules. 

In a system of m elements, we imagine a partition in subsets of size m'. The 
difficulty is that the damage will have a statistical distribution in a subset, and thus it is 
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Figure 6. Two examples of data collapse for (0) m = 40 and (b) m = 169. The parameter a 
is one, and the exponent 8=0.25. Each distribution F,(8) is obtained by the superposi- 
tion of four independent data sets corresponding t o n  = 100,2W,400 and 800 (each being 
the result of 1wO different realizations). The reduced variables Fand 6 capture very well 
the n-dependence, particularly for large n. (c) shows that a marked evolution of F, with m 
is visible. 
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not possible to identify one single representative damage. However, it is not necessary 
to deal with the entire statistical distribution. Indeed, only three particular values of 
the damage are essential. Let us introduce the following coarse-grained damages: 

The ‘time’ has been counted proportionally to the total damage (i.e. (&di). In 
order to estimate this ‘time’ if needed in a scale-independent fashion, we normalize 
the total damage by the system size, and thus we d e h e  the auerage damage: 

This first coarse-grained damage is necessary to characterize the amount of damage 
that will be attributed to the subset at each time step. 

It is also necessary to characterize at any stage the probability of choosing a 
particular subset. The rules of the model are very well suited for this purpose. This 
probability is simply the sum of the probabilities of picking each component, and thus 
it is proportional to (Ziq(di)) .  In order to keep the function q ( d )  identical for all 
levels of description, we introduce an equiualent damage, dw, so that q(dCq) is equal to 
the average value of q(di ) .  Again, changing the sum into the average is innocuous 
because of the normalization of the probabilities. Thus the equivalent damage 
expression is 

d eq = q(-l)(L m’ i=1 q(d , ) )  , (10) 

where qd-l) is the inverse function of q. Using this definition, the probability of 
damage to a subset is proportional to q(d,) for this subset. Note that in the case 
where subsets have different sizes, this last expression has to be multiplied by the 
number of components of the concerned subset. 

Finally, in order to satisfy the stopping criterion, one needs to keep track of the 
most damaged site in the subset. Thus the maximum damage is the third and final 
coarse-grained damage we define: 

(11) 
m’ 

i= I 
dm=max(di). 

We finally use the reduced form of the damage variable 6 constructed so as to 
account for the n-dependence. The state of a subset is thus simply characterized by the 
three parameters 6,,=(l-d,)nB, 6,=(1 -des)na and 6,=(l-6,)na. 

Let us now study how these parameters evolve for various values of m and n. 
Figure 7 shows 6, as a function of aaV. We see that all points collapse onto a single 
curve for all m and n. The physical meaning of this data collapse, is that it is possible 
to provide a scale-independent description of the time-eoolution of the damage 
process. 

Figure 8 shows that on the contrary, bm is not a unique function of 6,, but that it 
depends significantly on m. The larger the system ( m ) ,  the faster the maximum 
damage will increase. However a closer analysis reveals that the ratio d,/d, is 
roughly constant apart from some initial transient regime, and that moreover, this 
ratio increases logarithmically with m as shown on figure 9. Thus if the time evolution 
of the model can be easily coarse-grained, the stopping criterion has to be considered 
more carefully, since it is controlled by extreme statistics, and not by the most 
representative part of the distribution. 
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This can be understood as follows. As time proceeds, the distribution of damage 
can be seen as a very peaked function (representative of d, or deq) which is preceded 
by an exponential tail. The fact that de, is independent of m signifies that tbe weight of 
this exponential part is negligible compared to the peak where most elements are 
present. Therefore, we can consider the statistical distribution of damage indexed by a 
‘time’, parameter, such as t=da,, so that the probability that the damage of a site is in 
the interval [d, d + dd] is C(d, daV) dd. Moreover, this distribution should be indepen- 
dent of m. Indeed, the probability to choose an element with a damage d at time d, is 
C(d, d&(d)/q(deq). Since dcq is a function of d., which does not depend on m. 

However, the largest damage will be such that 
1 

C(d, d,) dd = l lm. 

6 av 

Figure 8. The maximum damage 6, is plotted as a function of the average damage 6, for 
the same parameters as lor Egure 7. A systematk trend with m is observed. 
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Fipure9. Ratio of the maximum damage to the equivalcnt damage d,ld* as a function of 
the rescaled maximum damage 8,. The same parameters as for figure 7 are used. 

And thus d, will be a function of m as observed in figure 8. The assumption that the 
upper damage tail of the distribution is an exponential C(d, d,) -A exp( - d/&) leads 
to a logarithmic dependence d,Kdolog(m). Figure 9 shows in addition that do is 
roughly proportional to d,,. 

When m increases, we have argued that the distribution C(d, f )  was not affected, 
but the large damage states with a low probability will be more densely occupied. 
Since the stopping criterion is a function of the maximum damage only d,= 1, the 
system will simply be arrested at a different time dav= l/log(m). 

It is worth noting that n and m are pulling the system in opposite directions. At 
tixed m, when n increases, the damage distribution becomes more narrow, and 
concentrated toward d=  1. On the contrary, when m increases, at tixed n,  the system 
is quenched at earlier stages of evolution. The weights of these two trends are very 
different (one is a power-law while the other is a logarithm). For instance, if both n 
and m increase equally, the n effect will dominate. 

6. Conclusion 

We have introduced and discussed a statistical model to account for instabilities in 
collective systems. The number of damage states has been shown to lead to variations 
which could be accounted for by the introduction of the scaling variable 6 = (1 - d ) d .  
The value of B has been related to the singularity of the weight function, p. The 
number of elements shows an opposite trend which has been shown to be equivalent 
to stopping the evolution of the system at an earlier time. 

Albeit the scaling behaviour observed in our model has some flavour of observed 
scaling laws for the appljcations we mentioned in the introduction, quantitative 
confrontations of the results with others requires the introduction of spatial wrrela- 
tions which are absent from the present mean-field version. In particular, the 
existence of a non-zero threshold damage appears to be a pathology of this mean-field 
approach, whereas the scaling with the number of damage states is similar to the one 
observed in the mentioned applications. Developments along those lines will be 
investigated in the future. 
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